VEHICLE TECHNOLOGIES OFFICE

Overview of the DOE Advanced Combustion Engine R&D Program

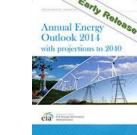
June 16, 2014

Gurpreet Singh, Program Manager
Advanced Combustion Engine R&D
Team Members:
Ken Howden, Roland Gravel, and Leo Breton

Outline

- State of technology today for ICE
- Overview of the Advanced Combustion Engine R&D Program
- Combustion and Emission Control Subprogram
 - Engine Combustion Research
 - Low Temperature Combustion
 - Predictive Simulation for ICE Design
 - Emission Control R&D
 - High Efficiency Engine Technologies
- Solid State Energy Conversion Subprogram
- Summary

Opportunity for Increased ICE Efficiency


Increasing the efficiency of internal combustion engines (ICEs) is one of the most promising and cost-effective approaches to improving the fuel economy of the U.S. vehicle fleet in the near- to mid-term.

"The performance, low cost, and fuel flexibility of ICEs makes it likely that they will continue to dominate the vehicle fleet for at least the next several decades. ICE improvements can also be applied to both hybrid electric vehicles (HEVs) and vehicles that use alternative hydrocarbon fuels." DOE QTR 2011¹

OTR GUARANNA TECHNOLOGY ARVIEW

DOE 2011

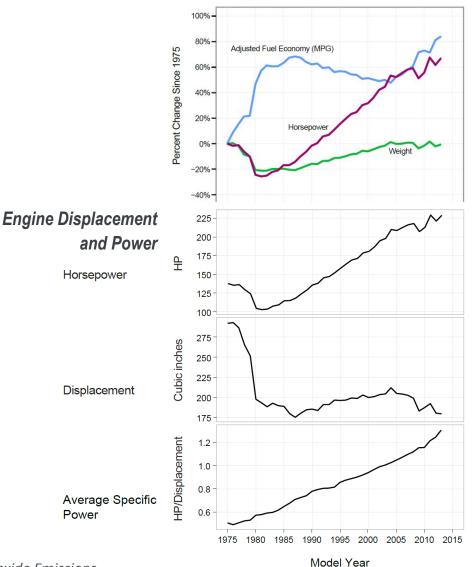
"...ICEs ... are going to be the dominant automotive technology for decades, whether in conventional vehicles, hybrid vehicles, PHEVs, biofueled or natural gas vehicles. ...better understanding of the combustion process and emissions production can help to overcome a major barrier to more advanced ICEs, this work is important to the country. ..." NRC Report 2013²

DOE 2013

NRC 2013

EIA AEO 2014³ reference case scenario - even by 2040, over 99% of vehicles sold will have ICEs.

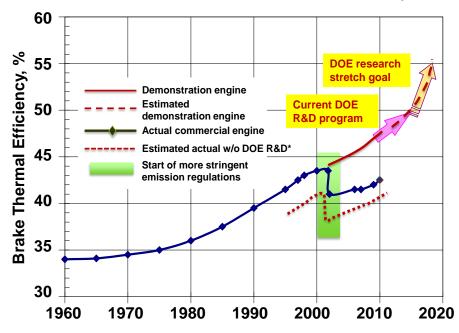
¹ Quadrennial Technology Review, DOE 2011

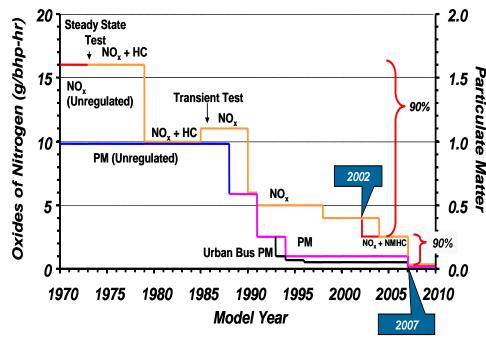

² Review of the Research Program of the U.S. DRIVE Partnership: 4th Report, NRC 2013

³ Annual Energy Outlook 2014, Early Release, December 2013.

Passenger Vehicle Fuel Economy Trends

Increase in internal combustion engine performance has been largely responsible for significant fuel economy increases (in spite of increases in vehicle size and weight).




Source: EPA, Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2013, December 2013

Progress In Heavy-Duty Diesel Engine Efficiency and Emissions

Historical progress in heavy-duty engine efficiency and the challenge of simultaneous emissions reduction, illustrate positive impact from DOE R&D support.

- DOE R&D improved thermal efficiency of over-the-road heavy-duty diesel engines by over 4.5%.
- Benefits from heavy-duty vehicles alone (1995 2007)
 represent an over 70:1 return on investment (ROI) of
 government funds for heavy-duty combustion engine R&D total savings of over \$70B.

[Source: Retrospective Benefit-Cost Evaluation of U.S. DOE Vehicle Advanced Combustion Engine R&D Investments: Impacts of a Cluster of Energy Technologies, U.S. DOE, May 2010]

Historical Trend in Emissions from New Diesel Engines

"We have been working with DOE on clean engine technology for the past 20 years. In fact, many of the technologies used in our engines today were developed in partnership with the DOE, our national labs, universities and other research institutions." – Tim Solso, Cummins Chairman and CEO, June 2010.

Advanced Combustion Engine R&D

strategic Goal: Reduce
petroleum dependence by
removing critical technical
barriers to mass
commercialization of highefficiency, emissions-compliant
internal combustion engine
(ICE) powertrains in passenger
and commercial vehicles

Primary Directions

- Improve ICE efficiency through advanced combustion strategies
- Develop aftertreatment technologies
- Explore waste energy recovery with mechanical and advanced thermoelectric devices

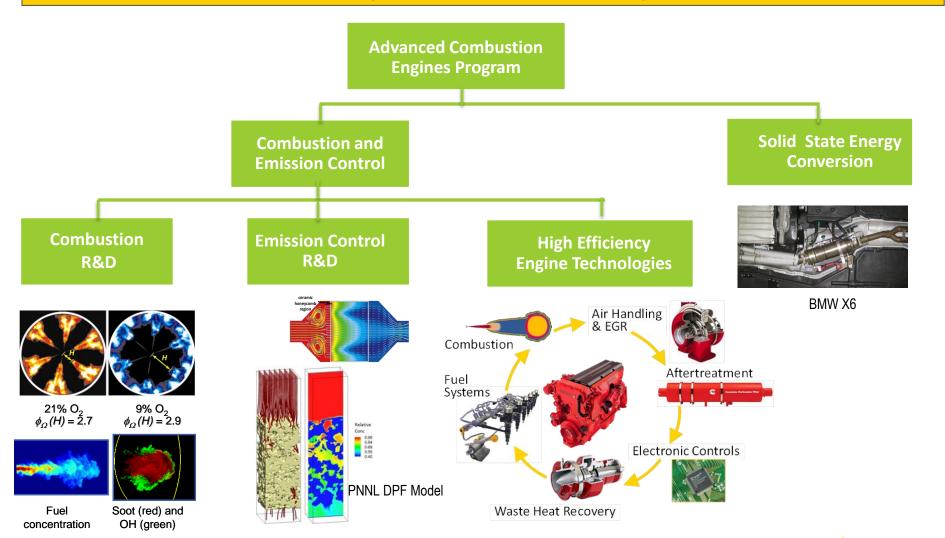
Performance Targets*

	Light-Duty		Heavy-Duty	
	2015	2020	2015	2020
Engine brake thermal efficiency			50%	55%
Fuel economy improvement	25 – 40%	35 – 50%	20%	30%
NOx & PM emissions	Tier 2, Bin 2	Tier 3/LEV III	EPA Standards	EPA Standards

^{*}compared to 2009 model year baseline

Advanced Combustion Engine R&D Program: Budget by Subprogram

Major Activities	FY 2013 Current	FY 2014 Enacted	FY 2015 Request
Advanced Combustion Engine R&D	\$55,004K	\$49,970K	\$49,000K
Combustion and Emission Control	46,804	45,723	49,000
Solid State Energy Conversion	8,200	4,247	0



^{**} FY 2013 full year CR inclusive of SBIR/STTR.

^{***} FY 2014 budget request inclusive of SBIR/STTR.

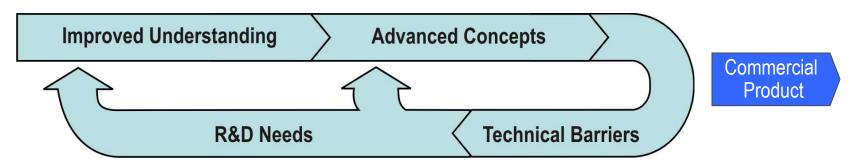
Advanced Combustion Engine R&D

Strategic Goal: Remove critical technical barriers to mass commercialization of high-efficiency, emissions-compliant internal combustion engine (ICE) powertrains in passenger and commercial vehicles

Overall R&D Approach

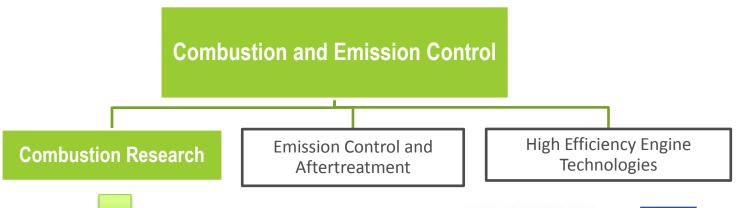
Advanced Combustion Engine R&D Industry Fundamental Research Applied Research & Deployment

Fundamental R&D

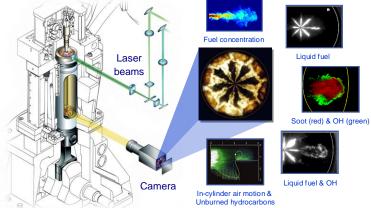

- SNL Advanced Combustion Strategies (LTC, lean-burn gasoline, advanced Diesel)
- LLNL Chemical kinetics models (Combustion, fuels and emissions)
- LANL CFD modeling of combustion
- ANL X-ray fuel spray characterization
- PNNL Catalyst Characterization (NOx and PM Control)
- Universities Complementary research

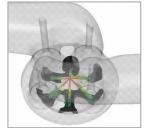
Fundamental to Applied Bridging R&D

- ORNL Experiments and simulation of engines and emission control systems (bench-scale to fully integrated systems)
- ANL fuel injector design, LTC engine experiments

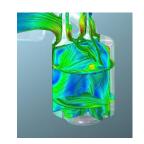

Competitively Awarded Costshared Industry R&D

- Automotive and engine companies, – engine systems
- Suppliers enabling technologies (sensors, ignition, VVA, WHR)





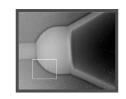
Combustion and Emission Control R&D



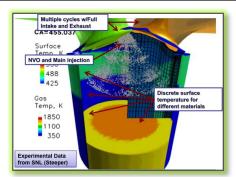
- Explore low-temperature combustion strategies to achieve higher engine efficiencies with near-zero emissions of NOx and PM.
- Develop greater understanding of engine combustion and in-cylinder emissions formation processes.
- Develop science-based, truly predictive simulation tools for engine design

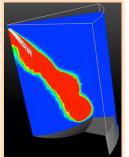
Advanced Engine Combustion Research

- □ **Goal:** To develop the knowledge base for low-temperature combustion (LTC) strategies and carry research results to products.
 - Science-base for advanced combustion strategies
 - Computational tools for combustion system design and optimization
 - Identify potential pathways for efficiency improvement and emission compliance
- □ Close collaboration with industry through the <u>Advanced Engine Combustion</u> <u>MOU</u> led by Sandia National Labs *carries research to products.*


- Cross cuts light-duty and heavy-duty engine R&D
- University research* integrated with MOU
 - *Funded under the NSF/DOE Partnership on Advanced Combustion Engines

Research Tools Bridge Fundamentals to Application


- Close coupled modeling and experiments
 - Advanced diagnostics including optical, laser, x-ray, and neutron based techniques
 - Multi-dimensional computational models and combustion simulators
 - > Fuel kinetics
 - Multi- and singlecylinder engines



Nozzle Sac X-Ray Image

Optical Engine

Engine Simulation

LTC Simulator

HCCI & Leanburn Gasoline

Multi-Cylinder Diesel

□ Close collaboration between industry, national labs and universities

Chemical kinetic solver

interfaced to CFD code

□ Cross-cuts light- and heavy-duty engine R&D

Leading to engine CFD modeling tools widely used in industry

Combustion Research Directions and Challenges

Combustion Strategies Enabling Improved Efficiency and Very-Low Emissions

- □ <u>Low-Temperature Combustion (LTC):</u>
 - Premixed-Charge Compression-Ignition (PCCI)
 (PPCI, PCI, MK, ...) "mixed enough"
 - Homogeneous-Charge Compression-Ignition (HCCI) – "heterogeneous enough"
 - Reactivity Controlled Compression Ignition (RCCI) – "dual fuel" combustion
 - □ <u>Dilute Gasoline Combustion</u>: Fuel-air mixing, ignition and flame propagation in stratified mixtures, stochastic misfire and knock challenges, fuels, emissions...
 - □ <u>Clean Diesel Combustion</u>: EGR, high-pressure and multi-pulse injection, lifted-flame combustion, post injections for in-cylinder and aftertreatment emission control...

LTC Challenges:

- Combustion phasing
- Load range
- Heat release rate
- Transient control
- HC and CO emissions
- Fuel characteristics

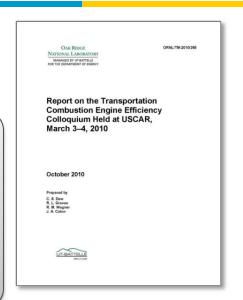
Diesel and HCCI Combustion

Conventional Diesel Combustion (movie of hot, glowing soot)

Homogeneous Charge Compression Ignition (movie of combustion chemiluminescence)

- fuel injector (center) sprays 8 jets of liquid fuel into combustion chamber
- compression-heating ignites fuel
- soot forms in fuel-rich jets, and glows red/orange/yellow
- some soot escapes combustion ⇒ soot emissions
- high-temperature combustion = high NOx
- high efficiency

- fuel is vaporized and premixed with air prior to compression
- compression-heating ignites fuel
- mixtures are fuel-lean so no soot forms, but combustion reactions emit light (blue)
- no soot emissions
- low-temperature combustion = low NOx
- high efficiency

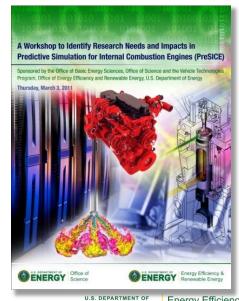


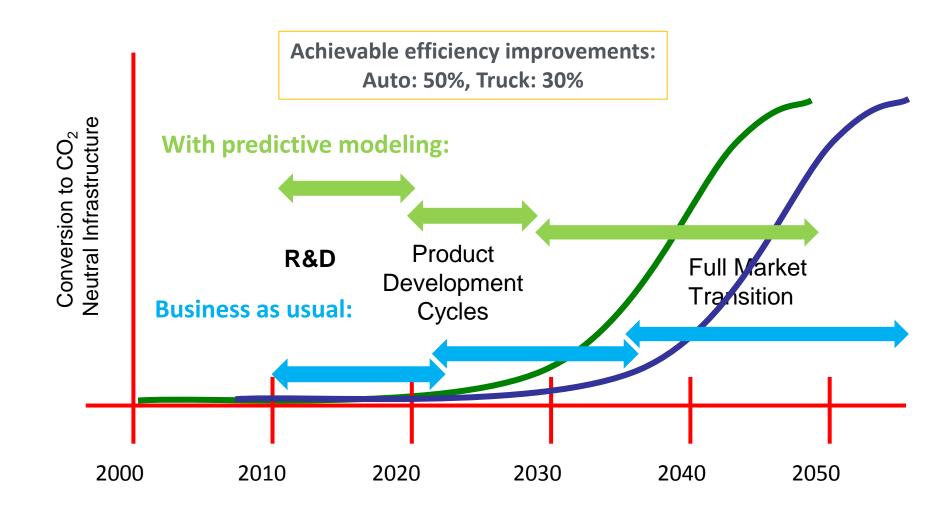
Workshops to Identify R&D Needs

Combustion Engine Efficiency Colloquium, USCAR Detroit, MI, March 3 – 4, 2010

Findings

- Achievable peak efficiencies > 60%, "affordable" engines may be lower.
- Possible 2X improvement in fuel efficiency for LD vehicles.

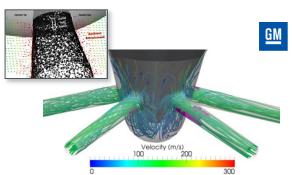



Workshop on Predictive Simulation of ICE (PreSICE), March 3, 2011

<u>Highest Priority Industry Barriers For Advanced Engines</u> (BES/VTO PreSICE workshop focus)

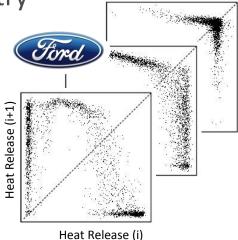
- Effect of stochastic nature of in-cylinder flow on engine combustion, performance and emissions
- Spray modeling and experimentation in dense spray and nozzle internal flow regions, including physics like cavitation and flash boiling.

Product Development Must Be Accelerated To Meet Energy Goals



High Performance Computing (HPC) Could Accelerate Development of Advanced Combustion Engines at an Unprecedented Scale

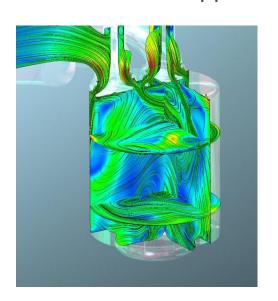
■ World-class HPC expertise and resources applied to address engineering challenges (technology barriers) once thought unsolvable
★OAK


■ Example ORNL projects in collaboration with industry

- Understanding stochastic and deterministic processes driving cyclic variability in highly dilute SI engines and their impacts on efficiency
 - Major challenge is scaling serial problem (cycle-tocycle variations) to parallel computation architecture
- Understanding and optimizing fuel injector design for improved efficiency and reduced emissions
 - Computational framework for coupling models of internal injector flow and cavitation with in-cylinder spray and combustion

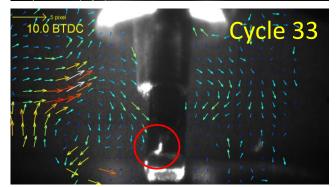
RESEARCH & DEVELOPMENT

> Reference: Neroorkar, Mitcham, Plazas, Grover, Schmidt, "Simulations and Analysis of Fuel Flow in an Injector Including Transient Needle Effects", ILASS-Americas 24th Annual Conference on Liquid Atomization and Spray Systems, San Antonio, TX, May 2012.



ORNL Participants: Dean Edwards, Sreekanth Pannala, Charles Finney, Miroslav Stoyanov, Stuart Daw, Wael Elwasif, Clayton Webster, Robert Wagner

Stochastic Processes Priority Research Direction


- Development and validation of models to enable simulation of stochastic processes
 - Sub-grid scale models for unresolved processes
 - Reduced chemical kinetic mechanisms
 - New theoretical frameworks / efficient numerical approaches

Complex in-cylinder flow during intake stroke in diesel engine

General Motors Research

High Performance Computing Could Accelerate Engine Design and Optimization

Basic Science

DOE Office of Science

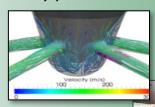
Fundamental expertise in combustion instability mechanisms and leadership in high performance computing including the world's fastest supercomputer

Comb (i+1

Comb (i)

TITAN Use Awards

- ALCC 32.5M hrs
- OLCF 17M hrs


Applied R&D

DOE/EERE/VTO

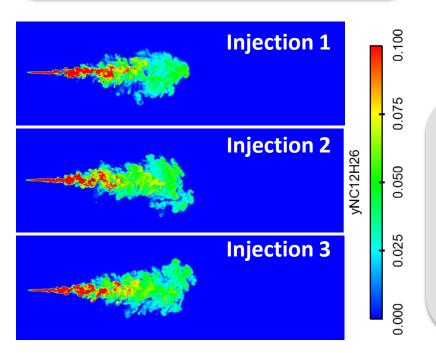
Accelerating high pressure fuel injector design optimization and providing new insights into combustion instability phenomena

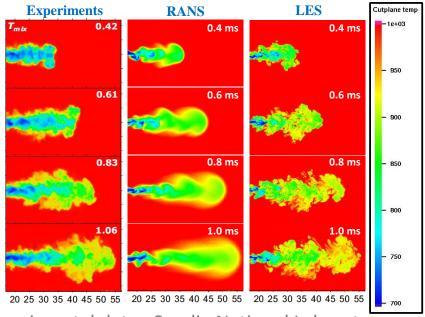
Injector image (source GM)

OAK 🗸

GM/Ford/GE

Research in close collaboration with automobile and engine manufacturers will directly impact the development of the next generation of high efficiency engines


GE Global Research


Making use of unique world class resources to address real-world challenges

Cyclic Variability with Large Eddy Simulations

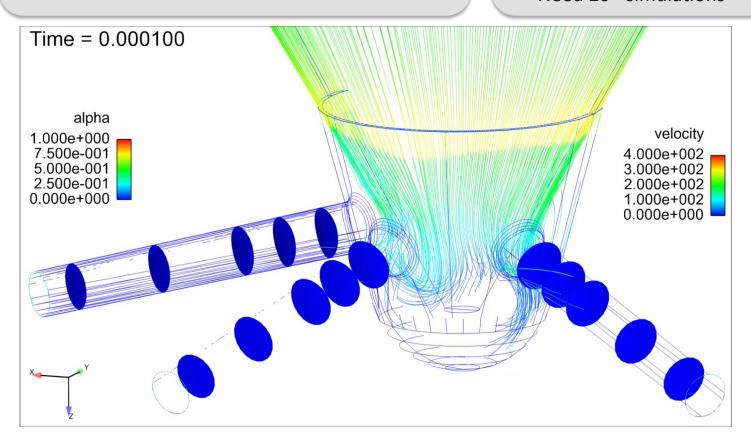
Project Impact

- High-fidelity Large Eddy Simulations (LES) can capture flow structures which lower fidelity (RANS) approaches cannot predict
- LES can predict cycle-to-cycle variations during each injection event. Further research to predict engine misfire!

Experimental data: Sandia National Laboratory

Computational Details

- High-temporal and spatial resolutions results in less sub-grid scale modeling with the LES
- Each cycle: 1 month on 256 cores; need at least 8-10 cycles
- Simulations performed at Fusion cluster at Argonne together with Cummins Engine Company and Convergent Science Inc.

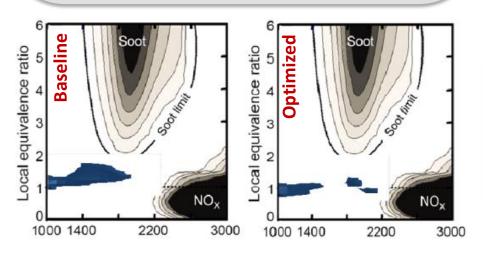

Multi-hole Nozzle Two-phase Flow Simulations

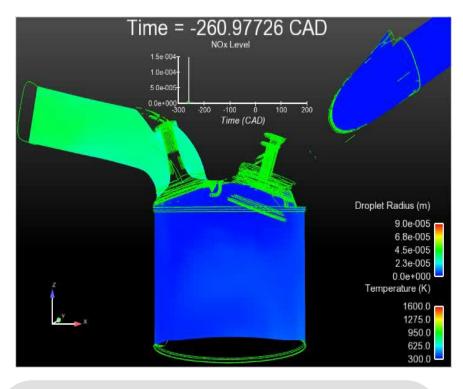
Project Impact

- Plume-to-plume variations in Multi-hole nozzles can now be captured
- Influence of needle transients on fuel spray development can now be predicted!

Computational Details

- High-temporal and spatial resolutions resulting in grid-convergent solutions
- Each Simulation: 1 month on 64 cores;
 Need 20+ simulations

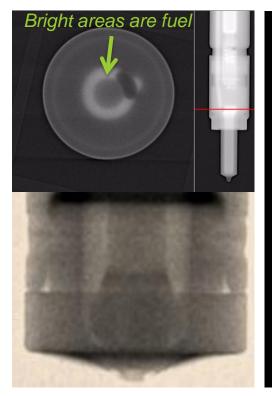


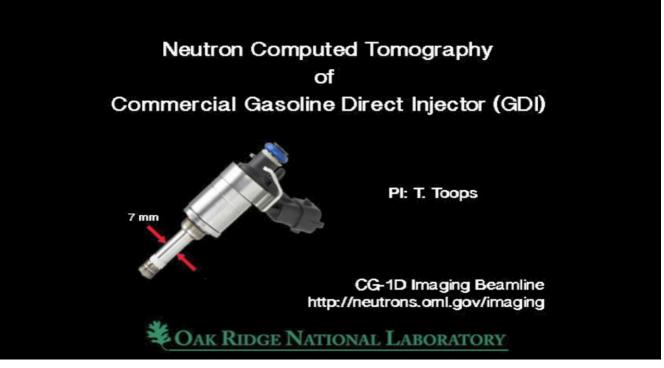


Fuel Economy Optimization with High-Fidelity Simulations

Project Impact

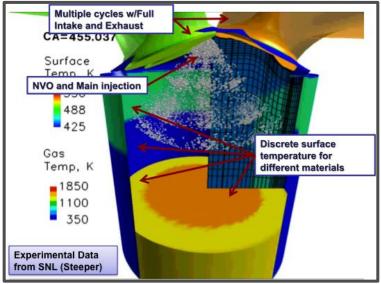
- Specific fuel consumption was optimized using genetic algorithm based tools and CONVERGE CFD code for Chrysler LLC.
- Predicted optimized speed-load conditions corroborated very well with experimental measurements on a Chrysler Dual-fuel combustion engine at Argonne
- The optimized conditions also showed considerably lower emissions compared to the baseline

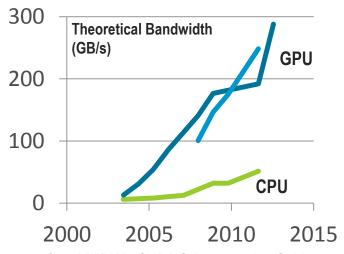

Computational Needs


- 400 engine simulations performed to achieve optimized fuel economy and emissions
- Each simulation generation takes about a week on 24 cores

Intra-nozzle Fuel Injector Processes Being Studied Using Neutron Radiography

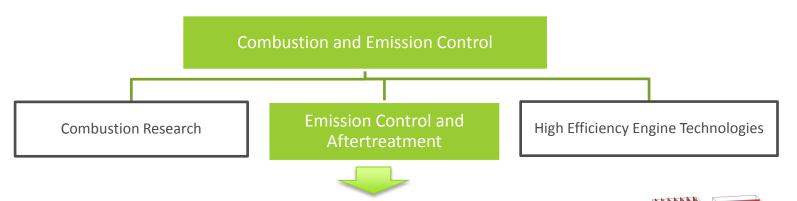
- Neutrons easily penetrate metal injectors with low interactions and offer opportunity to study critical internal fuel flow dynamics (e.g. cavitation)
- Neutrons readily diffracted/adsorbed by hydrogen containing hydrocarbons, like fuel
 - Complements X-ray and laser-based optical approaches being done in other DOE projects
- Demonstrated tomographic capability; moving towards dynamic image operation
 - 20 micro-second frames and 1 ms injections

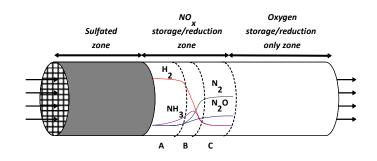


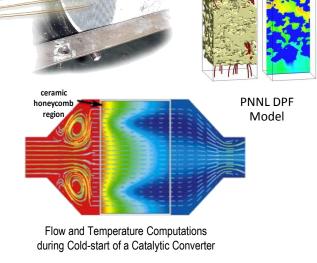


Numerical tools and High Performance Computing (HPC) enable more predictive CFD of Advanced Combustion Regimes (LLNL)

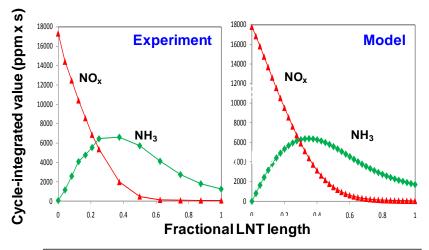
- Prediction of kinetically controlled combustion and emissions requires simulations with highly detailed chemistry
 - Enabled by multi-zone and adaptive preconditioning work at LLNL
 - HCCI simulations of gasoline surrogate
 (~1400 species) can now be run in less than
 24 hours.
- HPC provides opportunity to examine experimental and modeling uncertainties systematically
 - Reduces the necessary "tuning" of models to experiments
 - > Results in more predictive engine models
- ☐ Incorporating graphics processing unit (GPU) algorithms into CFD codes ensures continued improvement in modeling capability as computing platforms move towards massively parallel architectures.


HCCI engine simulation




from NVIDIA's CUDA C Programming Guide v.5.5

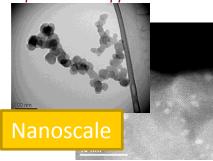
Combustion and Emission Control R&D

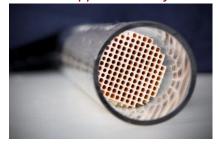

- Develop more efficient approaches for reducing NOx, and oxidizing PM, HC and CO in low temperature exhaust (150°C)
- Reduce energy penalty and cost of emission control systems

CLEERS Facilitates Technical Exchange Across Universities, National Labs, and Industry

- Cross-Cut Lean Exhaust Emissions Reduction Simulations (CLEERS) enables technical cross-talk on emission control technology via web meetings, data and model sharing, workshops, and the website www.cleers.org
- More than 100 representatives from industry, national labs, and universities attended the recent workshop in Dearborn, MI

Global model accurately predicts NH₃ formation inside LNT catalyst during regeneration


BASF John Deere Sandia National Bosch Johnson Matthey Laboratories Caterpillar Inc. Mack Powertrain Sud-Chemie **Chalmers University** Tenneco Inc. MFCA Michigan Technological Cummins Inc. Umicore University University of Michigan Delphi **Detroit Diesel Corporation Navistar** University of Wisconsin **Eaton Corporation** Northwestern University U.S. Department of Energy Ford Motor Company **Oak Ridge National** U.S. Environmental Gamma Technologies Laboratory* **Protection Agency** General Motors* **Pacific Northwest** Volvo **National Laboratory*** *Organizers Hilite



EERE VTO Catalysis Research for Vehicles Spans from Nanoscale to Full Scale

TEM images of PM and PGM dispersed on support

Monolith supported catalyst core

Engine-catalyst system

Full Scale

Research Areas

Surface Chemistry

Defining surface moieties and intermediates with DRIFTS and other tools

PGM Characterization

Defining Platinum Group Metal (PGM) roles and understanding sintering processes

Poison Effects

Understanding effect of fuel- and oil-borne poisons/fouling agents on aging processes

Reaction Mechanisms

Characterizing reaction processes and measuring kinetics

Characterizing Formulation-Specific Chemistry

Understanding role of components of complex heterogeneous catalyst formulation

Performance and Selectivity

Measuring formulation affect on performance and selectivity (including differentiating regulated vs. unregulated products)

Controlling Unique Advanced Combustion Emissions

Studying combination of advanced catalysts with advanced combustion to achieve overall gains in fuel economy and cost-effective emission compliance

Minimizing Fuel Penalty during Active Regeneration

On-engine studies to minimize fuel use and optimize emission control

Characterizing Combustion-Specific PM and MSATs

Defining morphology, size distribution, and chemical composition of Particulate Matter (PM) and Mobile Source Air Toxics (MSATs)

Particulate Filter-Based Control of PM

Studying oxidation kinetics, thermal issues, and fuel penalty for particulate filters

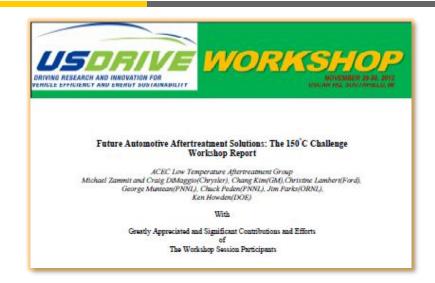
Industry Benefits

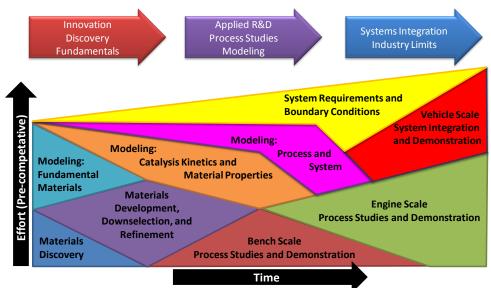
Understanding
Catalyst
Fundamentals

Predicting
Degradation and
Defining Mitigation
Strategies

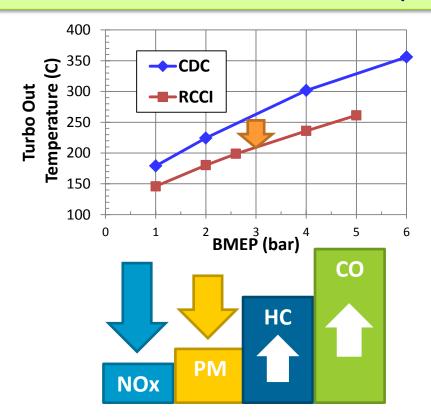
Developing and
Validating Models for
Product Design,
Controls, and OBD
Optimization

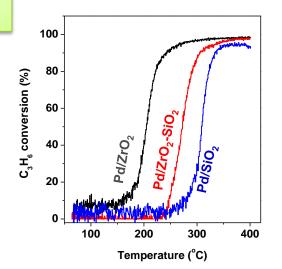
Achieving Cost-Effective Emissions Compliance while Maximizing Fuel Efficiency

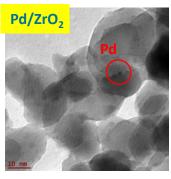


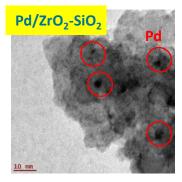

Workshop to Identify R&D Needs

U.S.DRIVE workshop conducted to develop a roadmap to address "The 150°C Challenge" related to future automotive emission control in highly efficient engines with low exhaust heat energy and new gas chemistries.

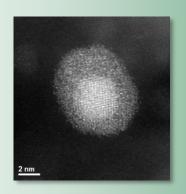

Scope/Resource Timeline (Technical Basis)



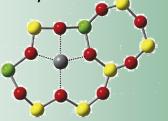

Low Temperature Emission Control Improvements Enabling Commercialization of Advanced Low Temperature Combustion (LTC)


 Advanced combustion techniques offer higher fuel efficiency but emission control challenges exist

LTC gives lower exhaust temperatures and higher HC and CO emissions relative to conventional diesel combustion (CDC)



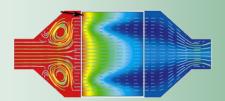
Catalysts with improved low temperature oxidation performance are being developed and studied to enable commercial viability


Low Temperature Catalysis Research Addresses New Challenges of Advanced Engines

Basic Science

DOE Office of Science

New materials showing excellent low temperature performance and durability



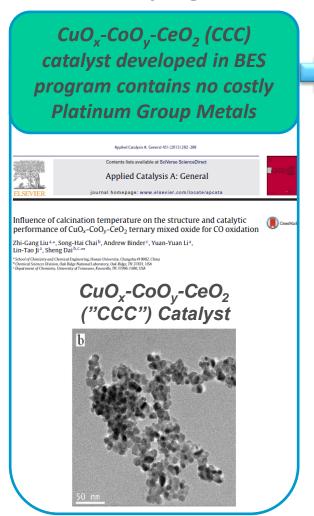
Applied R&D

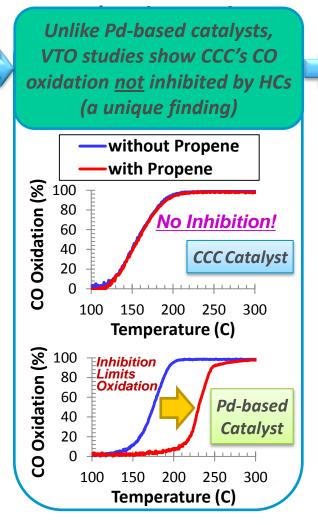
DOE/EERE/VTO

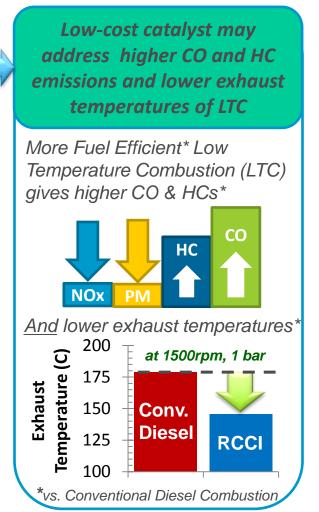
Materials being evaluated under real-world conditions to understand potential with high efficiency combustion strategies

Manufacturing/ Commercialization

Industry


Supporting automobile and truck manufacturers in the development and execution of a path forward to address this critical enabler for high efficiency engines


Transitioning catalyst material breakthroughs to overcome critical barriers to high efficiency transportation



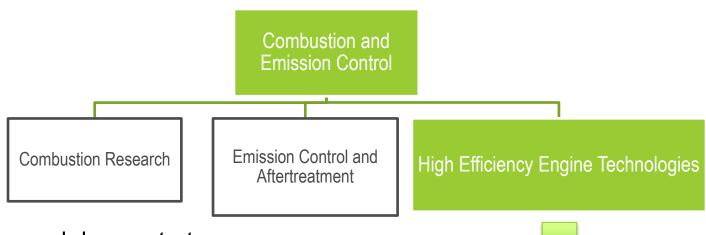
Low Temperature Emission Control Improvements Enabling Commercialization of Advanced Combustion

Catalyst invented in Basic Energy Sciences (BES) program leading to new discoveries in VTO program that may enable low cost emission control for advanced

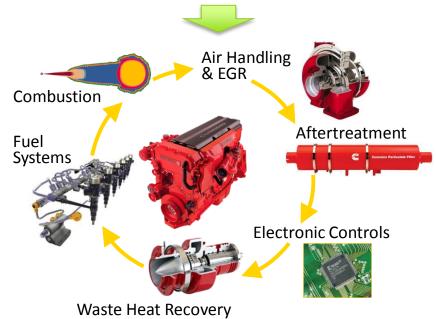
DOE-NSF Engine R&D Grants

\$12M over 3 years, equally shared by each agency - Jointly funded by the DOE Vehicle Technologies Office of the Office of Energy Efficiency and Renewable Energy and the National Science Foundation Division of Chemical, Bioengineering, Environmental, and Transport Systems, Directorate of Engineering

Combustion Research


- University of California, Berkeley \$1.65M
- Michigan State University \$1.30M
- Michigan Technological University \$0.65M
- University of New Hampshire \$0.60M
- The Pennsylvania State University \$0.60M
- University of Connecticut \$0.80M
- Stanford University \$1.2M
- Clemson University \$1.0M
- Yale University \$0.60M

Emission Control Research


- University of Kentucky \$0.90M
- University of Houston \$1.20M
- Purdue University \$1.50M

Combustion and Emission Control R&D

 Develop and demonstrate system level technologies to improve vehicle fuel economy through combination of combustion strategies, emission control, fuel injection, air handling, waste heat recovery, and control systems.

Integration of Component Technologies

SuperTruck Initiative

June 2009: Solicitation ... develop and demonstrate a 50% improvement in overall freight efficiency on a heavyduty Class 8 tractor-trailer, measured in ton-miles per gallon; achieve 50% engine thermal efficiency at 65 mph and show a pathway to 55% engine efficiency.

UPI Photo

- Both engine and vehicle system technologies included
- Vehicle target for freight efficiency (ton-miles per gallon) improvement based on 65,000 pound GVW
- 40% of the total improvement is required from engine technologies (50% thermal efficiency) and the remainder from vehicle system technologies.

Daimler Trucks North America VOLVO NAVISTAR®

SuperTruck - Develop and Demonstrate System Level Technologies to Improve Long Haul Truck Freight Efficiency


☐ Heavy-Duty Engine for Class 8 Trucks

- 20% improvement in engine brake thermal efficiency (50% BTE)
- Modeling and analysis for pathway to 55% brake thermal efficiency

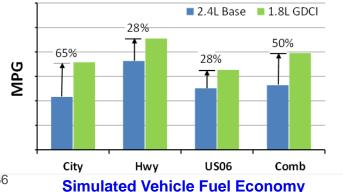
Status of 50% engine efficiency:

- Cummins and Daimler have demonstrated over 50% brake thermal efficiency for SuperTruck laboratory engine
- Navistar and Volvo have demonstrated over 48% engine efficiency and are on track to meet goal.

Advanced Technology Powertrain for Light-Duty (ATP-LD) Vehicles

Develop and Demonstrate System Level Technologies to Improve Vehicle Fuel Economy

Light-Duty Vehicles


- 25% fuel economy improvement for gasoline engines over baseline*
- 40% fuel economy improvement for diesel engines over baseline*

Status

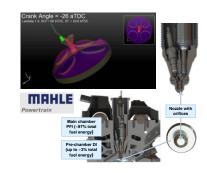
*Baseline is state-of-the-art port-fuel injected 2009 gasoline engine

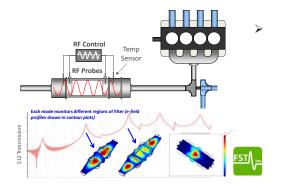
- GM and Chrysler achieved 25% fuel economy improvement.
- Ford and Bosch are on track to achieve 25% fuel economy improvement.
- Cummins is on track to achieve 40% fuel economy improvement.
- Delphi demonstrated potential for 50 percent increase in light-duty vehicle fuel economy

Simulations predict very good fuel economy on U.S. cycles with LTC engine

Enabling Technologies for Engine and Powertrain System

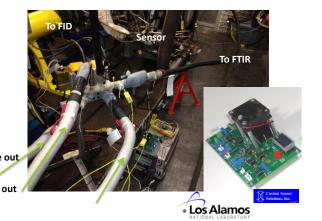
General Motors LLC completed dynamometer testing and established fuel efficiency at 11 speed-load test points for a production turbocharged engine modified with 11:1 compression ratio, high energy (DCOTM) ignition system, and dedicated low pressure loop (LPL) EGR system.




Energy Efficiency &

Renewable Energy

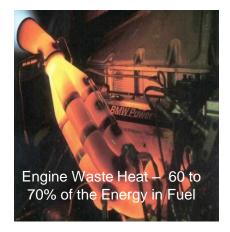
- Eaton Corporation developed a three stage Roots expander for testing in a heavy duty engine organic Rankine cycle (ORC) waste heat recovery system.
- MAHLE Powertrain LLC validated with pre-chamber simulation, multiple distributed ignition sites with turbulent jet injection for the next-generation ultra lean burn engines.


Filter Sensing Technologies (FST) Inc. demonstrated on-vehicle, a particulate matter (PM) radio frequency sensor and electronic control system that reduces the cost and fuel penalty of diesel particulate filters (DPFs).


Enabling Technologies for Engine and Powertrain System

Robert Bosch LLC developed an intake air oxygen (IAO2) sensor that directly and accurately measures the oxygen concentration in the intake manifold for accurate and robust EGR control for future engine concepts.

LANL completed engine dynamometer testing of its robust Nitrogen Oxide/Ammonia Sensors providing quantitative correlation of NOx response to FTIR and HC response to FID THC content during start up and EGR on/off operations.



Envera LLC completed the design of a variable compression ratio (VCR) engine incorporating variable valve actuation (VVA) and new supercharging technology.

Solid State Energy Conversion

Solid State Energy Conversion

Develop and demonstrate advanced thermoelectric systems to improve vehicle fuel economy by converting energy in the engine exhaust directly to electricity

GenTherm TEG Team

Ford Explorer

Competitively selected cost-shared 2nd Generation TEG projects:

- > GenTherm
- > General Motors
- GMZ Energy

Develop commercially viable advanced TEGs, improved technology for manufacturing TE devices, and assess feasibility and cost reduction for production volumes of 100,000 units per year

Summary

- □ Light-duty engine performance improvements have been largely responsible for passenger vehicle fuel economy increases (in spite of vehicle weight, horsepower and size increases).
- Continued improvement in heavy-duty engine efficiency and emissions has been responsible for significant fuel savings in commercial vehicles.
- EERE Advanced Combustion Engine R&D, in collaboration with industry and academia, using unique Federal laboratory expertise and facilities, significantly contributes to dramatic increases in engine efficiency and performance, improvements in vehicle fuel economy, and reduction in emissions and transportation energy use.
- There is still significant potential for further efficiency (fuel economy) improvements using Low-Temperature Combustion and engine optimization:
 - Potential for 50% FE improvement for light-duty vehicles
 - > Over 30% FE improvement for heavy-duty vehicles
- □ Combustion and emission control system modeling and simulation has reduced product development time and improved engine efficiency.

Contact Information

Gurpreet Singh

gurpreet.singh@ee.doe.gov

Web site:

http://energy.gov/eere/vehicles/vehicle-technologies-office

